Interconnected Cavernous Structure of Bacterial Fruiting Bodies

نویسندگان

  • Cameron W. Harvey
  • Huijing Du
  • Zhiliang Xu
  • Dale Kaiser
  • Igor Aranson
  • Mark S. Alber
چکیده

The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search for Proteins in the Liquid Extract of Edible Mushroom, Agaricus bisporus, and Studying their Antibacterial Effects

The edible mushrooms (basidomycetes) have high nutritional value, promote the immune system, and as a source of natural antimicrobial substances have been used to cure bacterial infections since ancient times.Various kinds of proteins with several biological activities are produced by mushrooms. In this research, in order to evaluate antibacterial activity of edible mushrooms, we isolated prote...

متن کامل

Selection of Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans fruiting bodies.

The dense hyphal network directly underneath the fruiting bodies of ectomycorrhizal fungi might exert strong influences on the bacterial community of soil. Such fruiting bodies might serve as hot spots for bacterial activity, for instance by providing nutrients and colonization sites in soil. Here, we assessed the putative selection of specific members of the Sphingomonadaceae family at the bas...

متن کامل

Search for Proteins in the Liquid Extract of Edible Mushroom, Agaricus bisporus, and Studying their Antibacterial Effects

The edible mushrooms (basidomycetes) have high nutritional value, promote the immune system, and as a source of natural antimicrobial substances have been used to cure bacterial infections since ancient times.Various kinds of proteins with several biological activities are produced by mushrooms. In this research, in order to evaluate antibacterial activity of edible mushrooms, we isolated prote...

متن کامل

Comparison of Major Bioactive Compounds of the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Fruiting Bodies Cultured on Wheat Substrate and Pupae.

In this study, the main bioactive compounds of the fruit bodies of Cordyceps militaris-such as adenosine, cordycepin, polysaccharides, mannitol, superoxide dismutase (SOD), and carotenoids-were cultivated on wheat and pupae, as well as sclerotium (the pupae portion) and sclerotium with fruiting bodies. The amounts of adenosine and polysaccharide in all the tested samples (except for the polysac...

متن کامل

Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

UNLABELLED The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012